
Theor Chem Acc (2005) 114: 38–45
DOI 10.1007/s00214-005-0641-4

REGULAR ARTI CLE

Mihai V. Putz · Nino Russo · Emilia Sicilia

About the Mulliken electronegativity in DFT

Received: 5 August 2004 / Accepted: 24 February 2005 / Published Online: 31 May 2005
© Springer-Verlag 2005

Abstract In the framework of density functional theory, a
new formulation of electronegativity that recovers the Mul-
liken definition is proposed and its reliability is checked
by computing electronegativity values for a large number
of elements. It is found that the obtained values, which are
compared with previously proposed electronegativity scales,
fulfill the main periodic criteria.

1 Introduction

In modern chemistry, the concept of electronegativity (χ ), as
proposed by J. J. Berzelius in 1811, [1] plays a crucial role
because it can be considered as one of the most important
chemical descriptors in order to account for the tendency of
atoms to build up a molecular system.

About 70 years ago, Pauling by an ingenious mixing of
thermodynamical and quantum mechanical arguments intro-
duced an electronegativity scale, which has enriched the con-
cept of atomic periodic properties [2].

A step forward was taken in 1934 and 1935 [3] by Mullik-
en, which introduced a different formulation in terms of two
other periodic properties, namely the ionization potential and
electron affinity, and enabled the extension of this concept to
molecules.

In the history of electronegativity formulations, the clas-
sical Allred-Rochow scale that introduces the idea of force
into the electronegativity theory has to be mentioned [4].

The electronegativity definition was subsequently modi-
fied and enriched toward a gradual appreciation of the various
complexities involved in the concept [5–11].

M.V. Putz · N. Russo (B) · E. Sicilia
Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni
per Elaborazioni Parallele e Distribuite-Centro d‘Eccellenza MIUR,
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In a continuous effort to better define the rather intuitive
concept of electronegativity, the Parr idea to define χ as the
negative of the chemical potential of the density functional
theory (DFT) of Hohenberg and Kohn, i.e. as the first deriva-
tive of the energy functional, the connection between electro-
negativity and quantum mechanics has been established [11,
12]. This result has opened up exciting perspectives to calcu-
late χ for many electron systems such as atoms, molecules,
and clusters. Moreover, in order to measure the “power of
atoms to attract electrons to themselves” [2], using the arse-
nal of different formulation, working formulas, and modern
quantum mechanical methods, a series of electronegativity
scales has been proposed [13].

In this work, a new electronegativity formulation is pro-
posed within the density functional theory, which appears to
be a natural and convenient tool to investigate this quantity.
In the same context, some attention is given to the analysis
of the equivalence between the Mulliken and the differen-
tial definitions of χ . The calculated electronegativities for 52
atoms are organized in an electronegativity scale that is com-
pared with those previously proposed [14–16] using several
definitions. Furthermore, the orbital electronegativities for C,
N, and O atoms are also given.

2 Theoretical method

2.1 Density functional reactivity indices background

Among the chemical concepts that have found a rigorous
quantitative definition in the framework of the DFT, a spe-
cial attention was given to the electronegativity formulation
[17,18].

For an N-electronic system placed into an external poten-
tial V (r), the general (first order) equation of the change in
the chemical potential, µ = µ[N,V (r)], can be written as
[11c]:

dµ = ηdN +
∫
f (r)dV (r)dr (1)
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in which the variation of the chemical potential µ (or the
electronegativity in the Parr definition µ = −χ ) for an elec-
tronic system is correlated with variation of the number of
electrons and of the external potential through the chemical
hardness (η):

η =
(
∂µ

∂N

)
V (r)

(2)

and the Fukui function ( f):

f (r) ≡
(

δµ

δV (r)

)
N

. (3)

Thus, the chemical potential (or the electronegativity) con-
cept appears to be strictly connected with the other two,
chemical hardness and Fukui function, extensively used reac-
tivity criteria. It is noteworthy that although in the original
hardness definition the factor 1/2 was put in to make it sym-
metrical with respect to the chemical potential definition [19],
nowadays the convention without this factor is also used [20].

In a similar way (see Eq. 1) the total energy for the elec-
tronic system, E = E[N,V (r)], can be written as:

dE = µdN +
∫
ρ(r)dV (r)dr , (4)

where the chemical potential and the electronic density, ρ(r),
are defined as:

µ =
(
∂E

∂N

)
V (r)

(5)

ρ(r) =
(

δE

δV (r)

)
N

. (6)

Equation 4 can be rewritten in terms of the Maxwell identities
as:

(
δµ

δV (r)

)
N

=
(
∂ρ(r)

∂N

)
V (r)

. (7)

Using the Parr definition of electronegativity for the chemi-
cal potential, from Eq. 5, this chemical descriptor takes the
form:

χ(N) = −
(
∂E

∂N

)
V (r)

. (8)

Furthermore, using the same Eq. 5 incorporated in the hard-
ness definition (Eq. 2), the expression for the hardness, as the
second order derivative of the total energy with respect to the
total number of electrons, assumes the form:

η(N) =
(
∂2E

∂N2

)
V (r)

. (9)

Turning now to the Maxwell identity (Eq. 7), the Fukui index
given by Eq. 3 can be defined in terms of the density and the
number of electrons as:

f (r) =
(
∂ρ(r)

∂N

)
V (r)

(10)

Combining in Eq. 1 expressions 2 and 10, the following
differential equation for electronegativity is obtained:

dχ =
(
∂χ

∂N

)
V (r)

dN −
∫ (

∂ρ(r)

∂N

)
V (r)

dV (r)dr (11)

Taking into account the relation 7 expressed within the
Parr electronegativity definition,(
∂ρ(r)

∂N

)
V (r)

= −
(

δχ

δV (r)

)
N

(12)

It is easily recognized that Eq. 11 has the same form as Eqs. 1
and 4.

However, in order to find electronegativity we propose
the alternative integration of Eq. 1 in the following way.

First, let us express the hardness and Fukui function through
the relations [11]:

η = 1

S
(13)

f (r) = s(r)

S
(14)

where S and s( r) represent the global and the local softness
defined as:

S =
(
∂N

∂µ

)
V (r)

(15)

s(r) =
(
∂ρ(r)

∂µ

)
V (r)

. (16)

Assuming that

N =
+∞∫

−∞
ρ(r)dr , (17)

the connection between the global and the local softness indi-
ces can be obtained:

S =
+∞∫

−∞
s(r)dr . (18)

Applying the exact formula of Berkowitz and Parr [21a] and
Ayers [21b], relating the conventional linear response func-
tion

[
δρ(r)/δV (r ′]

N
with softness, local softness, and soft-

ness kernel, the three quantum mechanical constraints, such
as the translational invariance condition [21c], the Hellmann-
Feynman theorem [21d], and the normalization of the linear
response function [21e], the softness kernel s( r, r’) becomes
[21e]:

s(r, r ′) = L(r ′)δ(r − r ′)+ ρ(r)ρ(r ′) (19)

as a sum of local and non-local contributions. Now, the local
response function:

L(r) = − ∇ρ(r)
∇V (r) (20)

corresponds to the scalar quantityL(r) = −∇ρ(r) · ∇V (r)/
|∇V (r)|2.

This model is general besides the different ways to eval-
uate the non-local term in Eq. 19.

Integrating Eq. 19 over r ′, the relation 16 for the local
softness becomes:

s(r) = L(r)+Nρ(r) (21)
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and using the relations 17 and 18 the corresponding global
softness looks like:

S =
+∞∫

−∞
L(r)dr +N2 . (22)

All these chemical descriptors depend on the electronic den-
sity and will be usefully combined to derive the desired Mul-
liken electronegativity.

2.2 The absolute electronegativity formula

Introducing expressions 21 and 22 into the hardness and
Fukui functions definitions (see Eqs. 13 and 14), we can
integrate Eq. 1 for electronegativity, assuming the initial zero
electronegativity value as V( x)→0, to obtain:

χ(N) = −
N∫

0

ηdN −
+∞∫

−∞
f (r)V (r)dr

= −
N∫

0

1

S
dN − 1

S

+∞∫

−∞
s(r)V (r)dr

= −
N∫

0

dN
+∞∫
−∞

L(r)dr +N2

−

+∞∫
−∞

L(r)V (r)dr +N
+∞∫
−∞

ρ(r)V (r)dr

+∞∫
−∞

L(r)dr +N2

. (23)

In order to simplify expression 23, the following definitions
are introduced:

a =
+∞∫

−∞
L(r)dr =

+∞∫

−∞

∇ρ(r)
[−∇V (r)]dr (24)

b =
+∞∫

−∞
L(r)V (r)dr =

+∞∫

−∞

∇ρ(r)
[−∇V (r)]V (r)dr (25)

CA =
+∞∫

−∞
ρ(r)V (r)dr . (26)

The last introduced quantity, CA, has already been named
chemical action index [22] since, analogously to the physical
definition of an “action”, it will be shown that the variational
principle can be applied to it.

The integration of Eq. 23 gives the final and general
expression for electronegativity:

χ(N) = − 1√
a

arctan

[
N√
a

]
− b

a +N2
−NCA

1

a +N2
,

(27)

which is an analytical counterpart with a more general depen-
dence ofχ on the energy functional. This correspondence can
be obtained employing in the general energy Eq. 4 the ground
state constraint of constant chemical potential. The equation
of the change in total energy (Eq. 4) can be rewritten as:

dE − µdN =
∫
ρ(r)dV (r)dr , (28)

which corresponds to a path integral over the reaction path
followed by the functional differentiation around the ground
state:

δ

{∫
[dE − µdN]

}
= δ

{∫ [∫
ρ(r)dV (r)dr

]}
. (29)

Under the ground state constrain [11a, 11d]

µ = CONSTANT , (30)

it is provided the equivalence:

δ {E[ρ] − µN [ρ]} = δCA (31)

that appears to be the most general relationship between
chemical potential (negative of electronegativity) and the to-
tal energy, through the chemical action.

2.3 The Mulliken electronegativity from DFT principles

Starting from the proposed electronegativity expression
(Eq. 27), the identification of the Mulliken and the Parr differ-
ential electronegativity definitions is demonstrated, without
having recourse to the application of the finite-difference
scheme to Eq. 8. Moreover, a reformulation of the Mulliken
electronegativity definition is obtained as a generalization of
the classical one when the DFT concepts are included.

Starting from the traditional Mulliken electronegativity
formula, in terms of ionization potential (IP) and electron
affinity (EA) [3], the following series of identities can be
considered:

χM(N) = IP(N)+ EA(N)

2

≡ [E(N)− E(N + 1)] + [E(N − 1)− E(N)]

2

= −E(N + 1)+ E(N − 1)

2
. (32)

The corresponding integral formulation of the last member
of Eq. 32 looks like:

χM(N) = −1

2

|N+1〉∫

|N−1〉
dEN . (33)
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If Eq. 4 is introduced into Eq. 33 and the integration limits
are taken into account, the results are:

χM(N) = −1

2

|N+1〉∫

|N−1〉

[(
∂E

∂N

)
V (r)

dN +
∫
ρN(r)dVN(r)dr

]

= −1

2

N+1∫

N−1

(
∂E

∂N

)
V (r)

dN

−1

2

[∫
ρN(r)VN+1(r)dr−

∫
ρN(r)VN−1(r)dr

]
.

(34)

As a consequence of the Hohenberg-Kohn theorems, each of
the last two terms of the right side of Eq. 34 vanish. This can
be accomplished by virtue of the equivalence 31, which per-
mits to rewrite the variational equation for the ground-state
density functional theory:

δ {E[ρ] − µN [ρ]} = 0 (35)

as:

δCA = δ

[∫
ρ(r)V (r)dr

]
= 0 . (36)

It is worth noting that the last expression combines the first
and second Hohenberg-Kohn theorems, providing the con-
text in which the last two terms of Eq. 34 become zero. Thus,
the Mulliken electronegativity within DFT is obtained:

χM(N) = −1

2

N+1∫

N−1

(
∂E

∂N

)
V (r)

dN . (37)

As Eq. 37 clearly shows, the relationship between the Mul-
liken electronegativity and the Parr differential one does not
involve the use of the finite-difference approximation and
does not depend on the particular form of E(N).

Taking into account Eq. 8, the identity in Eq. 37 becomes:

χM(N) = 1

2

N+1∫

N−1

χ(N)dN . (38)

The result 38, which is here rigorously density functional
principles based, was also previously proposed by Komo-
rowski [23], considering the average of the Parr differential
electronegativity over a suitable region of charge.

By performing the definite integration required in Eq. 38,
using Eq. 27, we arrive at the present density functional Mul-
liken version of electronegativity:

χM(N) = b +N − 1

2
√
a

arctan

(
N − 1√

a

)

−b +N + 1

2
√
a

arctan

(
N + 1√

a

)

+CA − 1

4
ln

[
a + (N − 1)2

a + (N + 1)2

]
. (39)

Although we started from a formulation in terms of ioniza-
tion and affinity energies, we have derived a reformulation
depending on different quantities, such as total number of
electrons, density, external potential, and their gradients. This
new approach allows us to extend the description of various
chemical situations as atoms involved in bonds.

Equations 27 and 39 are consistent with the electronega-
tivity equalization principle as shown in the Appendix.

The electronegativity expression given in the Eq. 39 rep-
resents our proposed working electronegativity formula that
will be used to derive an electronegativity scale for almost
the entire periodic table.

3 Computational Details

In this section, we list the steps that have to be taken into
account to apply the proposed Mulliken electronegativity for-
mula.

The electrons of the atomic system are distinguished as
core and valence ones within a pseudopotential picture [24a,
b]. In this way, the required computational procedure is sim-
plified. Of course, all-electron computations are possible but
they involve the problem of assuring the orthogonality of all
the wavefuntions of all electrons of an atom. Moreover, tak-
ing into account the pseudopotential approach evidences the
effects of the addition of electrons to the valence shell under
the core potential.

The used approach requires, furthermore, the transfor-
mation of the many-valence electron system into a valence
one-electronic system. For achieving this, the link between
the exact and density-dependent pseudopotentials is possible
following the virial theorem. Such a constraint requires the
scaling of the pseudo-orbital to be [24b]:

ψ(q, r) = q3/2ψ(qr) , (40)

q being a scaling factor. Therefore, the scaling factor q is
searched in relation with the number of valence electrons,
but such that it fulfills the normalization condition:∫

|ψ(q, r)|2dr = 1 . (41)

In this work, the effective potential of the core is represented
as a pseudopotential employing the Stuttgart/Bonn group
pseudopotentials under the wavefunction expansion [24c],
and the Mulliken electronegativity (39) is computed starting
from lithium [24c].

It is worth noting that the H and He atom values are not
included in the present work due to the adopted computa-
tional procedure that involves the pseudopotential

Since the condition of Eq. 41 is very restrictive, the scal-
ing factor, q, has been fixed also considering an additional
constraint that takes into consideration the number of va-
lence electrons. This aim was accomplished noting that pre-
vious atomic electronegativity formulations fit our definition
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Table 1 The atomic Mulliken electronegativities (in eV) computed at different levels of theory and experiment, from top to bottom of each
element’s cell: present, Pauling (in units of

√
eV), experimental [15,26], Mulliken-Jaffé [14,27], and Xα [16] electronegativities, respectively

Li Be B C N O F Ne

3.02 3.40 5.66 8.58 9.77 12.41 15.60 13.37
0.81 0.94 1.70 2.68 3.08 3.96 5.03 4.29
3.01 4.9 4.29 6.27 7.27 7.53 10.41 –
3.10 4.80 5.99 7.98 11.5 15.25 12.18 13.29
2.58 3.8 3.4 5.13 6.97 8.92 11.0 10.31
Na Mg Al Si P S Cl Ar
2.64 3.93 5.89 6.80 8.33 11.88 14.06 12.55
0.68 1.11 1.77 2.08 2.59 3.79 4.52 4.01
2.85 3.75 3.21 4.76 5.62 6.22 8.30 –
2.80 4.09 5.47 7.30 8.90 10.14 9.38 9.87
2.32 3.04 2.25 3.60 5.01 6.52 8.11 7.11
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
2.48 2.19 1.83 2.28 2.42 2.72 2.01 3.90 3.03 3.48 2.91 3.13 3.30 4.24 4.94 4.82 7.35 9.59
0.63 0.53 0.41 0.56 0.61 0.71 0.47 1.1 0.81 0.96 0.77 0.85 0.90 1.22 1.45 1.41 2.26 3.02
2.42 2.2 3.34 3.45 3.6 3.72 3.72 4.06 4.3 4.40 4.48 4.45 3.2 4.6 5.3 5.89 7.59 –
2.90 3.30 4.66 5.2 5.47 5.56 5.23 6.06 6.21 6.30 4.31 4.71 6.02 8.07 8.3 9.76 8.40 8.86
1.92 1.86 2.52 3.05 3.33 3.45 4.33 4.71 3.76 3.86 3.95 3.66 2.11 3.37 4.63 5.91 7.24 6.18
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
1.05 1.63 1.76 1.73 1.68 2.07 1.96 1.93 1.72 1.98 2.18 2.36 2.48 2.74 6.29 4.98 6.70 6.27
0.15 0.34 0.38 0.37 0.36 0.49 0.45 0.44 0.37 0.45 0.53 0.59 0.63 0.71 1.91 1.47 2.04 1.9
2.34 2.0 3.19 3.64 4.0 3.9 – 4.5 4.3 4.45 4.44 4.43 3.1 4.30 4.85 5.49 6.76 –
2.09 3.14 4.25 4.57 5.38 7.04 6.27 7.16 7.4 7.16 6.36 5.64 5.28 7.90 8.48 9.66 8.10 7.76
1.79 1.75 2.25 3.01 3.26 3.34 4.58 3.45 3.49 3.52 3.55 3.35 2.09 3.20 4.27 5.35 6.45 5.36

of chemical action, CA, through the use of a Coulombic po-
tential [25]:

χ(N,Z) =
〈

1

r

〉
=
∫ {

ρ(N,Z, r)
1

r

}
dr

= −
∫

{ρ(N,Z, r)VCOULOMB(r)} dr

≡ −CCOULOMB
A (42)

with Z equal to the nuclear charge.

4 Results and discussion

Before discussing the reliability of our results, we would like
to underline that the main goal of our work resides in the
demonstration that the Mulliken electronegativity can be rig-
orously expressed within the density functional theory and,
consequently, we do not propose a new scale that aspires to
replace the previous electronegativity scales. However, we
emphasize that although the starting point for the present
development is the widely accepted approximate Mulliken
formulation we have reformulated it in terms of quantities
that better take into account the whole information of an
atomic system.

In any case, the obtained results for 52 elements from
lithium through xenon seem to satisfy most of the criteria for
the acceptability of an electronegativity scale. Results com-
ing from the application of Eq. 39 are listed in Table 1 to-
gether with some previous electronegativity scales. In partic-
ular, we have reported the Mulliken electronegativity, named

experimental, obtained using experimental values of ioniza-
tion potentials and electron affinities [15,26]. Amongst the
theoretical approaches, we have chosen to report the Mullik-
en-Jaffé scale [14,27] and the electronegativity values, calcu-
lated by a simple Xα method employing the transition-state
approach [16], which we call the Xα scale.

For completeness, the Pauling numbers (in units of
√
eV )

corresponding to the present values (in units of eV ) were also
included according to the transformation rule [9f]:

χP = 0.336(χ − 0.615) . (43)

Indeed, the present values deliver reasonable numbers respect-
ing the ratio between them by comparison with the original
ones [2b].

Concerning the acceptability guidelines, our results can
be summarized as follows [1,28]:

i. the scale was built up for isolated atoms;
ii. three significant figures are able to distinguish the elec-

tronegativities of all the considered elements;
iii. the given values are expressed in electronvolts;
iv. all the valence electrons were included in the electroneg-

ativity computation;
v. values obtained for the elements (N, O, F, Ne, Cl, Ar, Br,

Kr) that present oxidation states lower than their valence
electrons follow the appropriate requirement with the
exception of chlorine and fluorine atoms that have χ
values higher than that of the nearest noble gas atoms,
Ne and Ar, respectively. The electronegativity trend for
these atoms is F>Cl>Ne>Ar>O>N>Kr>Br. We consider
that the use of functions of spherical symmetry can be
indicated as the main source of error in chlorine and fluo-
rine electronegativity determinations;
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vi. the six considered metalloid elements (B, Si, Ge, As, Sb,
Te) that separate the metals from the non-metals have
electronegativity values which do not allow overlaps be-
tween metals and non-metals. Furthermore, looking at
the χ metal values and the requirement that they have
to have electronegativities lower than that found for the
silicon, the so-called silicon rule [1,28], is satisfied, al-
though silicon does not show the lowest χ value in the
metalloid band. On the other hand, this result agrees well
with the experimental [26] and previous theoretical [16]
determination performed at Xα level of theory. Finally,
we note that this behavior respects the fundamental rule
of the decreasing of electronegativity down groups;

vii. for binary compounds, the difference in electronegativ-
ity satisfies the definition of ionic, covalent, and metallic
bonds as required by the Ketelaar’s triangle;

viii. our definition is fully quantum mechanical;
ix. the decreasing of χ along the group is respected as well

as its difference in going from light to heavy atoms of
the same period increases left to right across rows taking
into account that for some heavy elements the relativ-
istic effects, which are not considered in the computa-
tions, can affect this trend. Correctly, the halogen atoms
have the highest electronegativity values with respect to
their left-row neighbors. Looking to the transition metal
atoms, we underline that the obtained electronegativities
fall in a narrow range of values compared with those of
the main group atoms.

However, note the low value for Mn and the fact that Mn
and Ti have smaller values with respect to the corresponding
alkali–metal K. In spite of the fact that the same anomalies
can be observed also for some other reported scales, we can
ascribe this trend to the choice of the pseudopotential and
basis set used.

In order to verify the adopted symmetry influence, we
have recalculated the electronegativity for C, O, and N atoms
by using p-type orbitals and the sp, sp2, and sp3 hybridization
states. Results, reported in Fig. 1, show how the introduction
of more realistic basis sets for the valence orbital description
increases agreement amongst electronegativity trends.

Indeed, the computed χ values follow the trends pre-
viously obtained by Mulliken–Jaffè [29] by using s- and p-
orbital basis and the same hybridized states. Finally, it should
be remarked analysing Fig. 1, that the electronegativity trend
from one type of hybridization to another is similar. This indi-
cates that the actual electronegativity formulation preserves
also the orbital hierarchy and is sensitive to the hybrid orbi-
tals as well. Moreover, the usefulness of this approach can
be tested performing calculations of reactivity indices and of
other periodic properties [30].

Finally, we underline that the proposed electronegativ-
ity values for the fifth period elements up to Sn are smaller
compared to the trend of the other proposed scales. This can
be due to several factors (e.g. pseudopotential, valence basis
set, relativistic effects) and further work is required to better
understand this behavior.

Fig. 1 Orbital electronegativities χ for C, N and O atoms, from top
to bottom respectively, versus the percent contribution of s orbital ob-
tained by using the basis set (BS) methods together with electroneg-
ativity values from Mulliken-Jaffè (MJ) scale [29]. The used symbols
are interpreted as: for χBS , and for χMJ in each plot, respectively

5 Conclusions

In the framework of density functional theory, we propose
a new electronegativity formulation, which is used to com-
pute a scale for almost the entire periodic table. Furthermore,
we show an analytical way for the determination of den-
sity functional Mulliken electronegativity that properly links
the electronic local quantities, such as the density and the
potential, with the global ones, as the number of electrons
neither involving the direct energy computation nor assum-
ing a particular behavior for energy, E( N).

The proposed electronegativity values follow almost all
the general criteria of acceptability of the proposed χ scales,
although the data are basis-set dependent on the way in which
the valence orbital electrons are described. The present ap-
proach opens also other perspectives. For instance, the actual



44 M.V. Putz et al.

study can be extended also to the molecular systems by the
appropriate implementation of molecular density and (effec-
tive) potential.
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Appendix

The electronegativity of an atom in a molecule (χ ) can be
evaluated starting from the atomic electronegativity (χ0) and
hardness (η0) through the relations [6e, 10b, 11a, 11b]:

χ = χ0 − η0�N

χ = χ0 exp(−γ �N) ∼= χ0 − χ0γ�N (44)

γ being a fall-off parameter [11b].
The reliability of the proposed electronegativity expres-

sions (Eqs. 27 and 39) can be checked showing that they are
consistent with Eq. 44

To do this, one can consider the atom placed at the center
of a sphere of infinite radius in which the influence of the
electronegativity of the same atom has to be evaluated , up to
where the probability of finding electrons is very low. There-
fore, if we apply the limit N(r→ ∞)→0, on the actual 27 and
39 absolute and Mulliken electronegativity formulations, the
following equations are obtained:

lim
N(r→∞)→0

χ(N) = −b
a

lim
N(r→∞)→0

χM(N) = − b√
a

arctan

(
1√
a

)
. (45)

If the Poisson equation within the long-range condition is
considered,

∇V (r) ∼= −4πρ(r)�r,

V (r) ∼= 4πρ(r)[�r]2 , (46)

the components a and b in Eq. 45 can be re-arranged, respec-
tively, as:

a ∼=
N∑
i=1

∇ρi
4πρi�ri

�ri = 1

4π

N∑
i=1

∇ρi
ρi

∼= 1

4π

N∑
i=1

�ρi

ρi�ri

∼= 1

4π

N∑
i=1

�ρi

�ρi
= N

4π
,

b ∼=
∫ ∇ρ

4πρ�r
4πρ[�r]2dr =

∫
∇ρ �rdr

∼=
∫
�ρ

�r
�rdr =

∫
�ρ(r)dr = �N . (47)

Introducing Eq. 47 to Eq. 45, they become:

lim
r→∞χ(N) = −4π

N
�N ≡ χ − χ0 ,

lim
r→∞χM(N) = −

√
4π

N
arctan

(√
4π

N

)
�N ≡ χ − χ0 (48)

that are formally identical to:

χ − χ0 = −η0�N ∼= −γχ0�N. (49)
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